Thích Học Toán

Archive for Tháng Hai 2nd, 2012

Chuỗi Fourier (2)

with 5 comments

Trong bài thứ hai, ta đặt câu hỏi hơi siêu hình về “ý nghĩa” của chuỗi Fourier. Câu trả lời là khai triển hàm tuần hoàn thành chuỗi Fourier là một trường hợp đặc biệt của phân tích phổ.

Miền định nghĩa của hàm tuần hoàn là nhóm abel compact {\mathbb R/\mathbb Z}. Với mỗi {y\in [0,1]}, xê dịch một khoảng {y} cho bạn một toán tử {\tau_y} trên không gian các hàm {f} trên {\mathbb R/\mathbb Z}

\displaystyle (\tau_y f)(x)= f(x-y).

Các toán tử {\tau_x} lập thành một họ các toán tử giao hoán mà các hàm {e^{2 i \pi nx}} chính là các vec tơ riêng

\displaystyle \tau_y e^{2i \pi nx}= e^{2 i \pi n(x-y)}= e^{-2 i \pi ny} e^{2 i \pi nx}.

Khai triển thành chuỗi Fourier

\displaystyle f(x)=\sum_{-\infty}^\infty a_n e^{2 i \pi nx}

có thể xem như cách biểu diễn {f} thành tổ hợp tuyến tính (vô hạn) các vec tơ riêng. Để cho tổng có nghĩa, ban cần làm rõ không gian các hàm {f} là không gian nào, hàm liên tục, hàm khả tích hay là bình phương khả tích và trang bị cho nó một tô pô thích hợp.

Một thủ thuật quen thuộc của giải tích điều hòa là nới rộng họ các toán tử {\tau_x}. Mỗi hàm khả tích {\phi} trên {[0,1]} tác động lên {f} bằng công thức “tích chập”

\displaystyle (\phi* f)(x)=\int_0^1 \phi(y) f(x-y) dy.

Theo một nghĩa nào đó, đây chỉ là cách lấy trung bình của các toán tử {\tau_y} với trọng cho bởi {\phi(y)}. Theo một nghĩa nào đó, nếu thay {\phi} bằng phân bố Dirac {\delta_y} thì ta tìm lại được toán tử {\tau_y}. Các hàm {e^{2 i \pi nx}} tất nhiên vẫn là vec tơ riêng của các toán tử tích chập. Đọc tiếp »

Written by thichhoctoan

02/02/2012 at 01:42

Posted in Toán

Tagged with