Thích Học Toán

Archive for Tháng Ba 2nd, 2012

Phạm trù và đồng luân (2)

with one comment

Phải thừa nhận là “Phạm trù và đồng luân (1)” rất khó hiểu, không chỉ đối với người đọc mà cả đối với người viết 🙂 Tôi đã mắc khuyết điểm là kéo bạn đi quá nhanh, đi từ những cái bạn biết là không gian tô pô, ánh xạ liên tục đến những chỗ mà cả bạn lẫn tôi và thực ra cả nhân loại chưa hiểu rõ, đó là đồng luân cấp cao.

Bây giờ là lúc bạn nhẩn nha quay chậm lại cuộn phim để níu kéo lại một chút gì hữu hình cho bạn. Bạn có một không gian tô pô {X}. Bạn xét các điểm của {X}, rồi xét các đoạn thẳng trong {X} tức là các ánh xạ liên tục {[0,1] \rightarrow X}, rồi các hình vuông trong {X} tức là các ánh xạ liên tục {[0,1]^2 \rightarrow X}, rồi hình vuông ba chiều (lập phương), rồi hình vuông {n } chiều.

Cố định một điểm qui chiếu {x\in X }. Nhóm cơ bản {\pi_1(X,x )} là nhóm các lớp tương đương (đồng luân) các đoạn thẳng xuất phát và kết thúc tại điểm {x }, tức là ánh xạ {f:[0,1] \rightarrow X } với {f(0)=f(1)=x}. Nói cách khác thì f là một ánh xạ liên tục từ hình tròn {S^1} vào {X }. Khi bạn buộc hai đầu mút của đoạn {[0,1]} lại với nhau, nó trở thành cái gì đó giống như hình tròn.

Phần tử đơn vị của {\pi_1(X,x)} là lớp của ánh xạ hằng {e:[0,1] \rightarrow X } với {e(\alpha)=x } với mọi {\alpha \in [0,1]}. Đồng luân của {e} với chính nó là một ánh xạ liên tục {f:[0,1] \times [0,1] \rightarrow X } nhận giá trị {x} trên biên của hình vuông. Nói cách khác {f} là một ánh xạ liên tục từ mặt cầu {S^2} vào {X }. Tưởng tượng hình vuông như một cái mù soa, khi bạn buộc biên của mù soa lại, nó trở thành cái gì đó giống như mặt cầu. Như vậy nhóm đồng luân cấp hai {\pi_2(X,x)} là nhóm các lớp tương đương (đồng luân) của các ánh xạ liên tục {S^2 \rightarrow X} gửi một điểm qui chiếu của mặt cầu (nơi biên của hình vuông chập lại) lên điểm qui chiếu {x} của {X}. Đọc tiếp »

Advertisements

Written by thichhoctoan

02/03/2012 at 04:56

Posted in Toán

Tagged with ,