Thích Học Toán

Archive for the ‘Toán’ Category

Phạm trù và đồng luân (1)

with 8 comments

Chép lại từ blog cũ

*****

Người Ấn Độ day dứt từ ngàn năm với cái vòng luân hồi, làm cả thế giới day dứt theo. Không biết thì thôi, chứ biêt nay mai mình hóa ra con bọ biết bay thì thấy cũng lo lo. Nỗi lo luân hồi của các nhà tô pô cũng canh cánh không kém. Các ông ấy băn khoăn không biết thế giới này phải đồng luân mấy vòng thì mới thoát

Có ai đi hết mặt cầu
Đồng luân mấy nẻo về đâu thoát đời.

Bài toán làm các nhà tô pô đau đầu từ mấy chục năm nay là tính đồng luân mặt cầu. Cuộc đau đầu tập thể này vẫn đang tiếp diễn.

****

Bạn nối từ điểm x đến điểm y trên mặt giấy bằng một nét bút, thẳng cong tùy ý, gãy khúc cũng được, miễn là đầu bút không được rời khỏi mặt giấy. Trong ngôn ngữ toán học, một cung là một ánh xạ liên tục f : [0,1] \to X với từ đoạn thẳng đơn vị vào không gian tô pô X mặt giấy có điểm đầu là f(0)=x và điểm cuối là f(1)=y. Tô pô là khái niệm toán học diễn đạt một cách chính xác khái niệm ánh xạ liên tục.

Không gian X là liên thông nếu với mọi điểm x,y \in X, ta có thể băc một cung tình yêu từ điểm x đến điểm y. Thực ra, trong tô pô, người ta gọi thuộc tính này là liên thông theo cung, để dành chữ liên thông cho một thuộc tính hao hao.   Nói chung, trong tất cả các không gian ta thường gặp, liên thông và liên thông theo cung là tương đương nhau, và ta không dại gì mà không tự hạn chế vào trường hợp đó. Đọc tiếp »

Advertisements

Written by thichhoctoan

22/02/2012 at 04:46

Posted in Toán

Tagged with ,

Chuỗi Fourier (5)

leave a comment »

Bạn đã nóng ruột muốn biết khi nào thì chuỗi Fourier hội tụ. Bây giờ là lúc tôi có thể phát biểu một chỉ tiêu đơn giản cho sự hội tụ : chỉ tiêu này là một điều kiện đủ chứ không phải là điều kiện cần.

Cho {f} là một hàm tuần hoàn liên tục có đạo hàm tại một điểm {x_0}. Khi đó chuỗi Fourier sẽ hội tụ tại điểm {x_0}.

Bạn có thể giả thiết {x_0=0}{f(0)=0}. Bạn cũng có thể coi {f} như một hàm liên tục trên đoạn {[-1/2,1/2]} thỏa mãn {f(-1/2)=f(1/2)} và có đạo hàm tại điểm {0}. Cái bạn cần chứng minh là tích phân

\displaystyle \int_{-1/2}^{1/2} f(x)D_N (-x) dx = \int_{-1/2}^{1/2} f(x) {\sin(-(2N+1) \pi x) \over \sin (-\pi x )} dx

tiến về {0} khi {N} tiến ra {\infty}.

Cái khó chịu trong tích phân trên là mẫu số {\sin (-\pi x )}. Đọc tiếp »

Written by thichhoctoan

21/02/2012 at 04:43

Posted in Toán

Tagged with

Chuỗi Fourier (4)

with 6 comments

Bạn có thể thắc mắc tại sao tôi lại đi chứng minh hội tụ theo kiểu Cesaro trong khi cái bạn muốn hiểu là sự hội tụ của chuỗi Fourier. Tôi nói với bạn rằng con đường của khoa học là như thế. Khi chưa đi đến điểm bạn muốn đến, cái bạn phải làm là thiết lập những điểm tựa vững chắc để khi leo lên đó bạn có thể nhìn ra bốn phương tám hướng. Khổ nhất là sau cuộc tranh luận vã mồ hôi, bạn quay lại đúng điểm nơi bạn đã xuất phát.

Hệ quả chính của định lý Fejer về hội tụ kiểu Cesaro của chuỗi Fourier là mọi hàm tuần hoàn liên tục có thể xấp xỉ đều bằng một đa thức lượng giác. Bạn không chứng minh được các tổng riêng {S_N(f)} của chuỗi Fourier xấp xỉ {f}, nhưng bạn đã chứng minh được rằng dãy các tổng Cesaro {\sigma_N(f)} hội tụ đều đến {f}. Nói một cách khác, bạn đã xây dựng một dãy đa thức lượng giác hội tụ đều đến {f} và đó sẽ là một điểm tựa vững chắc cho công cuộc nghiên cứu toán học của bạn.

Một hệ quả đáng lưu ý của đinh lý Fejer là các hệ số Fourier {a_n} của hàm tuần hoàn liên tục {f} hội tụ về không. Khẳng định này không chỉ đúng với các hàm liên tục mà còn đúng với mọi hàm khả tích (định lý Riemann-Lebesgue). Đọc tiếp »

Written by thichhoctoan

12/02/2012 at 20:57

Posted in Toán

Tagged with , ,

Chuỗi Fourier (3)

with 3 comments

Bây giờ bạn cần làm rõ khi nào một họ các nhân được coi là xấp xỉ của toán tử đơn vị. Họ các nhân {[K_n(x)]_{n=1}^\infty} bao gồm các hàm liên tục trên {[0,1]} được coi là xấp xỉ đơn vị nếu

  1. với mọi {n}, {\int_{0}^1 K_n(x) dx=1},
  2. tồn tại {M>0} sao cho với mọi {n} ta có {\int_0^1 |K_n(x)| \leq M},
  3. với mọi {\delta>0}, ta có {\int_\delta^{1-\delta} K_n(x) dx \rightarrow 0} khi {n\rightarrow \infty}.

Các giả thiết trên đảm bảo rằng dãy {K_n * f} hội tụ về {f}. Cho một họ {[K_n(x)]_{n=1}^\infty} xấp xỉ đơn vị và {f} là một hàm khả tích trên {[0,1]}. Khi đó

\displaystyle \lim_{n\rightarrow\infty} (f*K_n)(x)=f(x)

mỗi khi hàm {f} liên tục tại {x}. Hơn nữa, nếu {f} liên tục khắp nơi thì {K_n * f} hội tụ đều về {f}.

Buồn một nỗi, họ các nhân của Dirichlet

\displaystyle D_N(x)={\sin(2N+1)\pi x \over \sin (\pi x)}

không xấp xỉ đơn vị. Thật vậy \displaystyle \int_0^1 |D_N(x)| dx \geq c\log(N). Vì thế tính liên tục của f không đảm bảo được sự hội tụ của chuỗi Fourier. Đọc tiếp »

Written by thichhoctoan

06/02/2012 at 15:30

Posted in Toán

Tagged with , ,

Chuỗi Fourier (2)

with 5 comments

Trong bài thứ hai, ta đặt câu hỏi hơi siêu hình về “ý nghĩa” của chuỗi Fourier. Câu trả lời là khai triển hàm tuần hoàn thành chuỗi Fourier là một trường hợp đặc biệt của phân tích phổ.

Miền định nghĩa của hàm tuần hoàn là nhóm abel compact {\mathbb R/\mathbb Z}. Với mỗi {y\in [0,1]}, xê dịch một khoảng {y} cho bạn một toán tử {\tau_y} trên không gian các hàm {f} trên {\mathbb R/\mathbb Z}

\displaystyle (\tau_y f)(x)= f(x-y).

Các toán tử {\tau_x} lập thành một họ các toán tử giao hoán mà các hàm {e^{2 i \pi nx}} chính là các vec tơ riêng

\displaystyle \tau_y e^{2i \pi nx}= e^{2 i \pi n(x-y)}= e^{-2 i \pi ny} e^{2 i \pi nx}.

Khai triển thành chuỗi Fourier

\displaystyle f(x)=\sum_{-\infty}^\infty a_n e^{2 i \pi nx}

có thể xem như cách biểu diễn {f} thành tổ hợp tuyến tính (vô hạn) các vec tơ riêng. Để cho tổng có nghĩa, ban cần làm rõ không gian các hàm {f} là không gian nào, hàm liên tục, hàm khả tích hay là bình phương khả tích và trang bị cho nó một tô pô thích hợp.

Một thủ thuật quen thuộc của giải tích điều hòa là nới rộng họ các toán tử {\tau_x}. Mỗi hàm khả tích {\phi} trên {[0,1]} tác động lên {f} bằng công thức “tích chập”

\displaystyle (\phi* f)(x)=\int_0^1 \phi(y) f(x-y) dy.

Theo một nghĩa nào đó, đây chỉ là cách lấy trung bình của các toán tử {\tau_y} với trọng cho bởi {\phi(y)}. Theo một nghĩa nào đó, nếu thay {\phi} bằng phân bố Dirac {\delta_y} thì ta tìm lại được toán tử {\tau_y}. Các hàm {e^{2 i \pi nx}} tất nhiên vẫn là vec tơ riêng của các toán tử tích chập. Đọc tiếp »

Written by thichhoctoan

02/02/2012 at 01:42

Posted in Toán

Tagged with

Chuỗi Fourier (1)

with 7 comments

Sau đây là một chuỗi bài về chuỗi Fourier, chủ yếu lược dịch từ quyển sách của E. Stein “Fourier Analysis”.

Cho {f} là một hàm khả tích trên đoạn {[0,1]} thỏa mãn {f(0)=f(1)}. Ta có thể xem nó như là một hàm tuần hoàn hay là một hàm trên nhóm compact {{\mathbb R}/{\mathbb Z}}. Chuỗi Fourier của {f} là chuỗi hình thức

\displaystyle \sum_{n=-\infty}^{n=\infty} a_n e^{2 i \pi nx}

với hệ số thứ {n}

\displaystyle a_n=\hat f(n)=\int_0^1 f(x)e^{-2 i \pi nx} dx.

Với mỗi số tự nhiên {N}, ta xét tổng riêng thứ {N}

\displaystyle S_N(f)=\sum_{n=-N}^N a_n e^{2 i \pi nx}.

Câu hỏi cơ bản của lý thuyết các chuỗi Fourier là khi nào thì {S_N(f)} hội tụ đến {f}? Tất nhiên là có nhiều cách hội tụ khác nhau, nhưng ở đây ta quan tâm trước hết đến hội tụ điểm : với điều kiện nào thì dãy số {S_N(f)(x)} hội tụ đến {f(x)} với {x\in [0,1]} đã cho. Đọc tiếp »

Written by thichhoctoan

30/01/2012 at 22:26

Posted in Toán

Tagged with ,

Hai chứng minh cho định lý Cayley-Hamilton

with 9 comments

Đây là một định lý cơ bản của đại số tuyến tính. Ở đây, bạn sẽ học hai chứng minh khác nhau cuả nó. Có lẽ cái thú vị nhất không phải là việc củng cố niềm tin vào Cayley và Hamilton mà là hai chứng minh này sẽ dẫn dắt bạn đi đến suy tưởng về những chuyện nằm ngoài phạm vi tuyến tính.

Phát biểu định lý Cayley-Hamilton : Đa thức đặc trưng a(t) của ma trận vuông x bậc n là định thức của ma trận t{\rm id}_n - x. Đây là một đa thức biến t có bậc bằng n

a= t^n -a_1 t^{n-1}+\cdots + (-1)^n a_n

với a_1=tr(x), a_2= tr(\wedge^2 x), … Ký hiệu đã được chọn một cách gọn nhẹ, nhưng cũng có thể gây hiểu lầm. Ở đây, a là một đa thức có biến t với hệ số phụ thuộc vào  x.

Với định nghĩa như trên, ta có a(x)=0 với a(x) là ma trận có được khi ta thế x vào biến t.

Thực ra, khẳng định trên đủ phổ dụng để ta không cần phải qui định trước xem x là ma trận có hệ số như thế nào. Tuy nhiên để dễ hình dung bạn sẽ gỉả sử rằng x là ma trận với hệ số trong một trường k, chẳng hạn như trường các số phức, mặc dù định lý đúng nếu x là một ma trận với hệ số trong một vành giao hoán bất kỳ.

Chứng minh thứ nhất : Cho V là một không gian vec tơ n chiều trên trường k với e_1,\ldots,e_n là cơ sở. Cho M là mo đun tự do hạng n trên vành đa thức cũng với cơ sở là e_1,\ldots,e_n.  Bạn có V\subset M như không gian vec tơ con trên k chứ không phải như k[t]-mo đun vì bản thân V chưa được trang bị cấu trúc k[t]-mo đun. Đọc tiếp »

Written by thichhoctoan

17/11/2011 at 04:07

Posted in Toán

Tagged with , , ,